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Abstract- The quantitative determination of LCMRGIc (Local
Cerebral Metabolic Rate of Glucose) is one of the advantages for
FDG-PET ([*®F]2-fluoro-2-deoxy-D-glucose positron emission
tomography) in diagnosis of brain functions. However, in the
FDG 3-compartment model, an input function made of arterial
blood samples is necessary for the computation. Due to the
invasion of arterial lines and inconvenience of the sampling
schedule, FDG quantitative analysis is seldom performed in
practice. To solve this dilemma, some methods have been used to
simplify the sampling schedule. But one or two blood samples
are still needed, or the estimated LCMRGIc may be seriously
biased. This paper proposes a new composite technique based on
two current methods to estimate the input function without any
blood sample. Eighteen patients are tested with this new
approach, together with current methods for evaluation. The
results show that this new technique can provide reliable
estimation of the input function, and the bias of K constants is
also reduced when the estimated input function isused.
Keywords - input function, non-invasive, blood samples,
quantitative, FDG

1. INTRODUCTION

Although PET (positron emission tomography) can provide
a functional view in the diagnosis of brain disorders, its low
resolution and signal-to-noise ratio will cause that the visual
interpretation highly relies on personal experience. Model
analysis using PET images can provide the true quantitative
information of brain functions; such as glucose metabolic rate
and cerebral blood flow in an objective way.

Among many kinds of the available tracers, this paper
focuses on the tracer FDG (['*F]2-fluoro-2-deoxy-D-glucose),
an analogue of glucose in PET. The 3-compartment FDG
model as shown in Fig.1 was developed by Sokoloff et al. [1]
and further extended by Huang et al. [2]. The input function,
denoted as Cp*(t), is obtained from arterial blood samples. To
avoid the risk of arterial insertion, about 20 arterialized
venous samples are used as an alternative to construct cp*(t).
Due to the invasion of arterial lines and inconvenience of the
sampling schedule, several methods have been proposed to
obtain the input function by fewer samples. For methods
based on less than two samples, two major approaches have
been developed. Takikawa et al. proposed a “population-
based” arterial blood curve, using statistical analysis to
establish the model for constructing the blood curve by one or
two blood samples [3]. With the same statistical idea, Wakita
et al. also established a 1-point blood-sampling schedule,
based on the statistical analysis of 120 patients [4]. For the
second approach, Feng et al. proposed the simultaneous
estimation (SIME) method [5], where the input function can
be estimated simultaneously with the k parameters with three
or more regions of interest (ROIs).
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Fig. 1. FDG 3-compartment model

The advantage of SIME is the ability to estimate the input
function without any blood sample. However, to recover the
input function by 3-ROI SIME, a total number of 6+(5*3)=21
parameters have to be estimated. Apparently, large amount of
computation would be required, and the result might be
biased because each parameter can only be varied within a
relatively narrow range. In this paper, we propose the SSIME
(Simplified Simultaneous Estimation) method based on SIME
and 1-point blood-sampling method. Similar to the SIME
method, multiple ROIs are used to estimate the input
function, but the input function model is replaced by the 1-
point blood-sampling method of Wakita et al., which depends
only on one parameter (the blood sample at the 40th minute).
According to the experiment results, a better estimated input
function, which is closer to the real blood curve, could be
obtained.

II. METHODOLOGY

Data Acquisition

Eighteen patients were collected in this study. Data were
acquired with the GE/Scanditronix PC4096WB PET scanner
in National PET/Cyclotron Center, Taipei Veterans General
Hospital. For each patient, a real plasma time-activity curve
(PTAC) was measured at times of 0.25, 0.5, 0.75, 1.0, 1.25,
1.5,1.75, 2,25, 3, 4,5, 6.5, 10, 15, 20, 30, 60, 90, and 120
minutes after injection. After iv injection of 10 mCi of FDG,
a two hour dynamic data acquisition was started in the
following sequence: 10x 12-sec frames, 2x 30-sec frames, 2x
I-min frames, and 3x 30-min frames [6]. To prepare for the
parameter estimation, ten ROIs are circled at the same
locations for each patient as illustrated in Fig. 2. Parameters
are estimated by non-linear least squares, and MATLAB
version 5.3 is used as the developing environment.

FDG kinetic model

The solution of the 3-compartment FDG model as shown
in Fig.1 can be obtained by Laplace transform. The relation
between tissue time-activity curve (TTAC) ¢*(t) and PTAC
Co* (t) is:
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When a ROI is circled in certain area of the brain, one
TTAC can be generated from PET dynamic data. With the
PTAC measured from arterial samples or arterialized venous
samples, NLLS (non-linear least squares) with the Newton-
Gaussion or Levenberg-Marquardt algorithm can be used for
estimation of B, B,, L; and L,. k;-k; can then be calculated

by:
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The LCMRGlc is calculated by:
R:i Iflk3,,cp —Kc 3)
LC k, +k; LC

where LC is the lumped constant, ¢, is the “cold”
concentration of glucose in blood, and K=(k; ks )/(k +ks ).
Since K is the determining factor to LCMRGIc, where LC is a
constant and C, is measured by the blood sample, the
determination of K can already provide a meaningful
reference for clinical diagnosis. Therefore, although
quantitative analysis of PET-FDG means the determination of
LCMRGlc, only K is concerned in this study.

Input function model
A. Six-parameter PTAC model

Feng et al. proposed a PTAC model consisting of six
parameters as follow [7]:

Cp(t) =[At-A, _AB]eA]t +AzeA2‘ +Ase)\3t (4)
This model is the original model used in SIME method to
generate the input function.
B. 1-point blood-sampling method by Wakita et al.

Wakita et al. examined and analyzed the input functions of
120 patients, and proposed a reference table [4]. In this
method, only one venous blood sample is needed and it
should be taken at the 40th minute after FDG injection. By
applying this sample to the reference table for simple
multiplication, a blood curve can be generated. To verify its
correctness, the evaluation of this I-point method is
performed with the real sample at the 40th minute applied to
this method. The results are satisfactory and prove that this
method can provide a reliable input function model. In our
study, this 1-point method is denoted as the 1-parameter
PTAC model and used to replace the original six-parameter
input function model in our method.

Conventional SME method

In modeling theory, it is impossible to estimate
simultaneously both the unknown input and system transfer
function with only the output already known. However, if the
initial guess for estimation and true parameters are close
enough, the simultaneous estimation of the input and system
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function might still be able to provide a reliable result. In
addition, when more than one ROIs are chosen, the estimated

Fig.2 Locations of the nine ROIs circled in our study.
The tenth ROI is of the whole brain.

input function will approach the true input function in theory.
Based on this idea, SIME technique is proposed and
simulated in [5] and further tested with three patient data in
[8]. Its cost function is defined in [8] as:

°@)=3 3 GO OO D5E-1)-c )

+ Z W [E,(t) =T, (t, T (5)

where N is the total number of ROIs, M is the number of
frames for each TTAC, h(t) is the impulse response function
(IRF) of the ith ROI with microparameters ki -k;" and CBV,
Bdenotes the vector of parameters to be estimated. ~ 5(t-tjip a
Dirac delta function shifted in time by units, and [ is
convolutlon function. ¢,(t) is the estimated input function, and
o (t) is FDG act1V1ty in plasma measured at time f
(k—l 2,...,m) [8] .Cr (t})is the FDG activity in brain at time .
The second summation term in this cost function is used for
weighting m blood samples assumed in original procedure.
Since this paper focuses on non-sampling techniques, this
summation term can be cancelled, and the cost function is
used in this study as:

OB IPYCIOLRLIOEL I Y
= )=

In the evaluation of this method, the initial guess of PTAC
model are given as: A;=851.1225, A,=20.8113, A;=21.8798
(Bg/ml), A=-4.1339, A,=-0.1191, A;=-0.0104 (1/min). In our
study, SIME uses three ROIs with one on gray matter (no.1 in
Fig.1), one on white matter (no.6 in Fig.1) and one of whole
brain, and the initial guess of h;(t) are given as k1~k4=0.1258,
0.2971, 0.0669, 0.0037 for the gray matter, 0.0553, 0.2429,
0.0668, 0.0092 for white matter and 0.0845, 0.2957, 0.0648,
0.0073 for whole brain, and the CBV initial guess is 0.058.

Smplified SSME method

A new technique based on SIME method and the 1-
parameter input function model is proposed in this paper.
This method replaces the 6-parameter PTAC model in the
SIME method with the 1-parameter model for generating
input function, i.e. ¢ (t) is generated by only one parameter,
the FDG activity in plasma at the 40th minute. In this paper,
this new technique is denoted as SSIME (Simplified
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Simultaneous Estimation). The main advantage of SSIME is
the reduction of number of parameters for estimation. For
example, if three ROIs are used in SIME, 21 parameters
including 6 of the PTAC model and 15 of the IRFs have to be
estimated simultaneously. However, only 13 parameters have
to be estimated in SSIME method with 3 ROIs (In SSIME,
CBV is not concerned in the IRFs). By reducing the number
of parameters, not only the computation can be faster, but
also the parameters can be adjusted with a wide range.
Therefore, a more reliable recovered input function could be
obtained by SSIME. In this study, SSIME with one, two,
three and four ROIs are tested respectively. The initial guess
of the ROI IRF is the same as mentioned in SIME method,
and the initial guess of the single parameter of input function
model is 249.5 (nCi/ml). The ROIs used in SSIME are (1) a
ROI on gray matter (no.1 in Fig.2) for 1-ROI SSIME, (2) two
ROIs with one on gray matter (no.l in Fig.2) and one on
white matter (no.6 in Fig.2) for 2-ROI SSIME, (3) three ROIs
with one on gray matter (no.1 in Fig.2), one on white matter
(no.6 in Fig.2) and one of whole brain in 3-ROI SSIME and
(4) four ROIs with the same ROIs as 3-ROI SSIME, and plus
another ROI on gray matter. (no.5 in Fig.2).

Data Analysis

In order to compare if the recovered PTAC is acceptable,
two ways of data analysis are applied in this study. First, the
recovered input functions are directly compared to the real
input function from, blood samples. The mean square error is

defined as:
> ) -e e
MSE =L (7)5
m

where t; denotes time at m minutes after injection, and m=120
in our study.C » is the real input function and € p 1s the
estimated input function. Since there are three methods
mentioned in this paper, the DSE between the real input
function and estimated input function by 1-point blood-
sampling method by Wakita et al., SIME, and SSIME can be
calculated respectively. One point to remember is that the
emphasis should be put on the comparison of SIME and
SSIME methods, because 1-point blood-sampling method
requires one real blood sample and mismatches our goal of
non-sampling schedule.

Second, since the estimated input function is used for the
parameter estimation of k constants in FDG kinetic model, an
estimated input function will only be “good” when it will
provide as close result of k constants estimation as the real
input function. To simplify this evaluation, only result of K is
listed and compared in this paper, since K is the dominating
factor of LCMRGIc as mentioned earlier. For each patient,
ten ROIs are circled as shown in Fig.2 and their K constants
are calculated via the real PTAC, PTAC estimated by SIME
and PTAC estimated by SSIME to evaluate the K estimation
performed to examine which method can provide a more
correct K estimation result, with the calculation of correlation
coefficient r and the regression equation. Finally, to compare
the speed of each method, time needed for estimation process
of each patient by MATLAB was also recorded.
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Fig. 3. The representative results of input functions from one subject. Solid
line represents the real input function from blood samples. The figure shows
the difference between SIME and SSIME, and the similarity of input

functions from 1-ROI and 3-ROI SSIME methods.
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III. RESULTS

The overall comparison of the above three methods,
including 1-point blood sampling method (by Wakita et al.),
SIME and SSIME methods, was summarized in Tablel].
Tablellalso included the results of SSIME with different
number of ROIs. To evaluate the effect of location with the
1-ROI SSIME method, testing results were listed in Table [,
and Table [J showed the effect of initial guess for input
function. The representative estimation results of the input
functions from SIME and SSIME were shown in Fig.3.

IV. DISCUSSION

From the results of our experiment listed in Table[], it can
be found that SSIME can provide a closer recovered input
function to the real one than SIME. As for the influence of K
constant estimation, SSIME has a high correlation coefficient
(0.93-0.941) and the slope of regression equation close to one
(0.987-0.997). It is clear that SSIME will provide a more
reliable result of K estimation than SIME. SSIME also has a
faster speed for estimating input function. It takes only less
than three seconds for 1-ROI SSIME and 25 seconds for 3-
ROI SSIME to estimate the input function for a patient, while
3-ROI SIME takes about 37 seconds. In summary, the
advantage of reducing total amount of parameters by SSIME
can be observed clearly in the performance of speed and
recovery ability.

From the results of Table[], it is quite interesting that 1-
ROI, 2-ROI, 3-ROI and 4-ROI SSIME methods seem to
provide similar results. Especially in correlation coefficient
and slope of regression equation of K estimation, 1-ROI
SSIME provides the most reliable recovered input function in
our experiment. The effect of using different ROIs in 1-ROI
SSIME was tested by the use of ROI no.1, 2, 5, 6,9 and 10 in
Fig.2 respectively. Although ROI no.1 seems to be the most
appropriate choice for 1-ROI SSIME, using a different ROI
can still provide a fairly reliable estimated input function.

As mentioned earlier in this paper, one important factor to
simultaneous estimation of input function and IRFs of ROIs
is a “good” initial guess of these parameters, where “good”
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means as close as possible. To evaluate the difference caused
by different initial guess of input function parameter, 198,
249.5 and 302 were tested as initial guess in input function
for 1-ROI SSIME as listed in Table [1. From the correlation
coefficient and regression equation, 249.5 is the most
appropriate initial guess among three. For the much lower
initial guess of 198, the correlation coefficient is reduced to
0.916, and slope of regression equation (1.23) shows that the
estimated input function would cause an over-estimation
effect of K constant estimation result. On the other hand, a
much higher initial guess of 302 also reduces the correlation
coefficient to 0.908 and the slope of regression equation is
reduced to 0.86, which means the estimated input function
would cause an under-estimation effect of K estimation
result. In this paper, initial guess of the input function is
suggested as 249.5 (nCi/ml) by analyzing our eighteen
subjects. If more patient data could be collected and analyzed
in the future, an optimal initial guess would be proposed in a
more reliable statistical view.

In brief, the method suggested in this paper for estimating
input function without any blood sample is the 1-ROI
SSIME, with the ROI located on gray matter. he initial guess
of the parameters is 249.5 for input function and
k1~k4=0.1258, 0.2971, 0.0669, 0.0037 for the ROI-IRF.

TABLE [J
SUMMARY OF THE COMPARISON OF THREE DIFFERENT
METHODS IN THIS PAPER

method r regression equation MSE |time (sec)
1-point Wakita | 0.965 y=0.9145x + 0.0004 12104.4 0.00
SIME 0.854 y =0.9519x + 0.0022 15628.8 | 36.87
1-ROISSIME | 0.941 y =0.997x + 0.0001 10954.8 2.88
2-ROISSIME | 0.922 y =0.9958x + 0.0001 10104.0 8.83
3-ROISSIME | 0.937 y =0.9836x + 0.0001 10494.0 15.66
4-ROI SSIME | 0.930 y =0.9871x + 0.0003 10957.2 | 25.00
TABLE [
SUMMARY OF THE ROI CHOICE COMPARISON IN 1-ROI SSIME
ROI choice r regression equation
ROIno.1 0.941 y =0.997x + 0.0001
ROIno.2 0.924 y =0.9948x + 0.0005
ROIno.5 0.922 y = 1.022x + 0.0003
ROI no.6 0.932 y =0.97x +0.0002
ROIno.9 0.925 y =1.0295x - 0.0005
ROIno.10 0.928 y =0.9623x + 0.0002
TABLE [J
SUMMARY OF COMPARISON OF INITIAL GUESS GIVEN TO INPUT
FUNCTION IN SSIME
initial guess r regression equation
198 0.916 y =1.2332x - 0.0006
249.5 0.941 y =0.997x + 0.0001
302 0.908 y = 0.8666x + 0.0002

V. CONCLUSION

We have proposed a reliable technique SSIME to estimate
the input function without any blood sample. The results
show that SSIME can provide good estimation of the input
function with better efficiency and reliable estimation of K
constants. This method can be applied in clinical diagnosis,
and further investigation of error effect caused by the
estimated input function should be undertaken in the future.
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